A DUALITY PROOF OF A THEOREM OF P. HILL

RANDALL R. HOLMES

ABSTRACT. A duality argument is given to prove the equivalence of a recent theorem of P. Hill and the main step in Zippin's proof of Ulm's theorem.

Let G and H be isomorphic finite abelian p-groups with isomorphic subgroups A and B, respectively, and set X = G/A, Y = H/B. In his 1935 proof of Ulm's theorem, Zippin established the following result.

Theorem (Zippin [2, p. 30], [3]). If $\varphi : A \to B$ is an isomorphism, then there exists an isomorphism $G \to H$ that induces φ if and only if φ preserves heights.

Recently, P. Hill has proved the following theorem (stated in a slightly different but equivalent form).

Theorem (P. Hill [1]). If $\psi : X \to Y$ is an isomorphism, then there exists an isomorphism $G \to H$ that induces ψ if and only if ψ preserves coset covalues.

Hill's theorem appears to be dual to Zippin's theorem. The purpose of this note is to make the connection between these two results more explicit by giving a duality proof of their equivalence.

First, recall the definitions. Let P be any finite abelian p-group and let $0 \neq x \in P$. The height of x in P is the unique integer $k \geq 0$ for which $x \in p^k P \setminus p^{k+1} P$ (and the height of 0 is ∞ , by convention). Similarly, the exponent of x in P is the unique integer k > 0 for which $x \in P[p^k] \setminus P[p^{k-1}]$ where $P[p^k] := \{y \in P \mid p^k y = 0\}$ (and the exponent of 0 is zero). If $S \leq P$, then the coset covalue of x + S is by definition the least among the exponents of the elements of x + S.

With the notation as above, set $A_k = A \cap p^k G$ and $X^k = G/(A + G[p^k])$ and define B_k and Y^k similarly. Let $\pi_X : G \to X$ and $\pi_Y : G \to Y$ denote the canonical epimorphisms.

Lemma.

- (i) An isomorphism $A \to B$ preserves heights if and only if it induces an isomorphism $A_k \to B_k$ for each k.
- (ii) An isomorphism X → Y preserves coset covalues if and only if it induces an isomorphism X^k → Y^k for each k.

Proof. The proof of (i) is trivial.

(ii) We can make the identifications $X^k = X/\pi_X(G[p^k])$ and $Y^k = Y/\pi_Y(H[p^k])$ so that an isomorphism $X \to Y$ induces an isomorphism $X^k \to Y^k$ if and only if it induces an isomorphism $\pi_X(G[p^k]) \to \pi_Y(H[p^k])$. The statement now follows since clearly the coset covalue of a coset g + A is k if and only if $g + A \in \pi_X(G[p^k]) \setminus \pi_X(G[p^{k-1}])$. \Box

Typeset by \mathcal{AMS} -TEX

¹⁹⁹¹ Mathematics Subject Classification. Primary 20K; Secondary 20E.

RANDALL R. HOLMES

In view of this lemma, the equivalence of Zippin's theorem and Hill's theorem can be stated as follows.

Theorem. The following statements are equivalent.

- (Z) If $\varphi : A \to B$ is an isomorphism, then there exists an isomorphism $G \to H$ that induces φ if and only if φ induces an isomorphism $A_k \to B_k$ for each k,
- (H) If $\psi: X \to Y$ is an isomorphism, then there exists an isomorphism $G \to H$ that induces ψ if and only if ψ induces an isomorphism $X^k \to Y^k$ for each k.

We need some preliminaries before proving the theorem. Denote the contravariant functor Hom $(\cdot, \mathbb{Z}(p^{\infty}))$ on finite abelian p-groups by $P \mapsto P^*$ (object map) and $\varphi \mapsto \varphi^*$ (morphism map). This functor is exact and P^{**} is naturally isomorphic to P (cf. [2, pp. 79–80]). As usual, if $S \leq P$ we identify S^* with P^*/S^0 and $(P/S)^*$ with S^0 where $S^0 = \{f \in P^* \mid f(S) = 0\}$.

Lemma 1. Let $\eta: G \to H$ be a homomorphism.

- (i) If η induces a homomorphism $\psi: X \to Y$, then η^* induces ψ^* .
- (ii) If η induces a homomorphism $\varphi : A \to B$, then η^* induces φ^* .

Proof. (i) Assume η induces a homomorphism $\psi : X \to Y$. This means that $\psi \circ \pi_X = \pi_Y \circ \eta$. Applying *, we have $\pi_X^* \circ \psi^* = \eta^* \circ \pi_Y^*$. Since $\pi_X^* : X^* \to G^*$ and $\pi_Y^* : Y^* \to H^*$ are the inclusion maps, this equation says that η^* induces ψ^* .

(ii) Similar. \Box

Lemma 2.

- (i) $A_k^* = A^{*k}$. (ii) $X^{k*} = X^*_k$.

Proof. (i) $A_k^* = G^*/A_k^0 = G^*/(A^0 + (p^k G)^0) = A^{*k}$, since $(p^k G)^0 = G^*[p^k]$. (ii) Use (i) with $X^* \leq G^*$ in place of $A \leq G$ and then apply *. \Box

Proof of Theorem. $(Z) \Rightarrow (H)$. Assume that statement (Z) holds. One implication in (H) is trivial. For the other, suppose we are given an isomorphism $\psi: X \to Y$ that induces an isomorphism $X^k \to Y^k$ for each k. By Lemma 1(i) and Lemma 2(ii), the isomorphism $\psi^*: Y^* \to X^*$ induces an isomorphism $Y^*_k \to X^*_k$ for each k. Part (Z) of the theorem applies to give an isomorphism $\eta: H^* \to G^*$ that induces ψ^* . Using Lemma 1(ii) and natural isomorphisms, we obtain an isomorphism $G \to H$ that induces ψ .

 $(H) \Rightarrow (Z)$. Similar. \Box

References

- 1. P. Hill, An isomorphism theorem for group pairs of finite abelian groups, Publ. Math. Debrecen 43/3-4 (1993), 343-349.
- 2. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, Michigan, 1954.

3. L. Zippin, Countable torsion groups, Ann. of Math. 36 (1935), 86-99.

Department of Mathematics, Auburn University, AL 36849-5310